skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Freeze, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The small signal-to-noise ratio (SNR) of conventional laser induced fluorescence (LIF) measurements using a continuous wave laser, either diode or dye, is typically overcome by amplitude modulating the laser at a specific frequency and then using lock-in amplification to extract the signal from measurement noise. Here, we present LIF measurements of the neutral helium velocity distribution function in an rf plasma using frequency modulated (FM) laser injection. A pulse train of 100% amplitude modulation is generated synthetically with a random sequence of pulse lengths. The FM signal then drives an acoustic optic modulator placed in the path of the injection beam in an LIF measurement. The signal from a fast photomultiplier tube is digitized and cross-correlated with the known modulation signal. The resultant FM-based LIF signal outperforms a conventional lock-in-based LIF measurement on the same plasma in terms of SNR and precision. 
    more » « less